# ANTIBACTERIAL ACTIVITY OF EFROTOMYCIN

#### B. M. FROST, M. E. VALIANT, B. WEISSBERGER and E. L. DULANEY

### Merck Institute for Therapeutic Research Rahway, New Jersey, 07065 U.S.A.

### (Received for publication May 10, 1976)

Efrotomycin is a narrow spectrum antibiotic. Among the genera tested for susceptibility *in vitro* it is most active against isolates of *Moraxella*, *Pasteurella*, *Yersinia*, *Haemophilus*, *Streptococcus* and *Corynebacterium*. The drug is as active by oral administration as by the subcutaneous route. Blood levels rise rapidly to high concentrations, after oral dosing, and are prolonged. Two peaks occur which may indicate biliary excretion and reabsorption. Urinary excretion is minimal. The high blood concentrations explain, in part, the *in vivo* activity against pathogens such as *Bordetella bronchiseptica* which are relatively insensitive *in vitro*. Oral activity of efrotomycin is an advantage over the related antibiotics, X–5108 and mocimycin.

Three related antibiotics X-5108<sup>10</sup>, mocimycin<sup>2,80</sup>, and kirromycin<sup>4)</sup>, were described in 1972~ 1973. Mocimycin and kirromycin are identical and antibiotic X-5108 is their N-methylated form<sup>5)</sup>. Efrotomycin<sup>6)</sup> belongs to this family of antibiotics. It is a disaccharide derivative of antibiotic X-5108 (DEWEY, R. S. and G. ALBERS-SCHONBERG, personal communication). The absolute structure of efrotomycin will be presented in a forthcoming paper. In the present communication, we report some *in vitro* and *in vivo* activities of efrotomycin (greater than 90% pure), and some comparisons with antibiotic X-5108 and mocimycin are made.

## In Vitro Activity

Antibacterial Spectrum

Initial tests showed effotomycin to have a limited but interesting spectrum in that it was active *in vitro* and *in vivo* against some important animal pathogens. The *in vitro* testing was then extended to a series of human and animal pathogens. In these studies, the test bacteria were grown for 16 hours in brain-heart broth (including 5% horse serum when necessary), diluted to  $10^{-8}$  in fresh medium and spot-inoculated onto the surface of 100 mm plates containing 10 ml of brain-heart agar with various concentrations of the antibiotic. The number of viable cells inoculated onto the plates varied from  $3 \times 10^{2}$  to  $7 \times 10^{8}$  per spot, depending on the test organism. The plates were scored visually after 24 and 48 hours.

The results in Table 1 show that effotomycin is not very active *in vitro*. Strains of *Moraxella*, *Pasteurella*, *Yersinia*, *Haemophilus*, *Streptococcus* and *Corynebacterium* are the most sensitive. The limited data with X-5108 and mocimycin show these two antibiotics to have a spectrum similar to effotomycin but to be more active than effotomycin *in vitro*.

### **Bactericidal Activity**

The question as to whether effotomycin was bactericidal or bacteriostatic was answered by the following experiments. Test bacteria were grown for 16 hours in brain-heart broth, diluted in fresh broth and added to tubes of brain-heart broth containing the antibiotic. The final concentration of cells varied from  $1.8 \times 10^6$  to  $1.9 \times 10^7$  per ml, depending on the test organism. The tubes were examined visually after 24 hours incubation at  $37^{\circ}$ C. The minimal inhibitory concentration(MIC) was taken as the lowest

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |                                                                                                   |                                      | MIC (µg/ı                              | nl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|
| Test organism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cada Na                                                                                                                                                    | Animal source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                   | Efrotom                                                                                           | nycin                                | X-5108                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Moci                                                    | nycin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |  |
| rest organism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Code No.                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No s                                                                                              | erum                                                                                              | Plus serum                           |                                        | Plus serum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         | Plus serum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24 hrs                                                                                            | 48 hrs                                                                                            | 24 hrs                               | 48 hrs                                 | 24 hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 48 hrs                                                  | 24 hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 48 hrs                                           |  |
| Aerobacter sp.<br>Aerobacter sp.<br>Aerobacter sp.<br>Bordetella bronchiseptica<br>Bordetella bronchiseptica<br>Corynebacterium equi<br>Corynebacterium hofmannii<br>Corynebacterium hofmannii<br>Corynebacterium hofmannii<br>Corynebacterium renale<br>Corynebacterium renale | 3309<br>3352<br>3253<br>F1728<br>25<br>26<br>29<br>39<br>38<br>48<br>65<br>74<br>76<br>77<br>81<br>223<br>225<br>226–1<br>226–2<br>227–1<br>227–2<br>227–3 | human<br>human<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>porcine<br>po | >400<br>>400<br>>400<br>150<br>100<br>100<br>250<br>100<br>100<br>200<br>100<br>250<br>200<br>100 | >400<br>>400<br>>400<br>150<br>150<br>100<br>300<br>100<br>100<br>200<br>100<br>250<br>200<br>150 | 25<br>25<br>50<br>50<br>50<br>50     | 25<br>25<br>50<br>50<br>50<br>50<br>50 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                                      | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                                              |  |
| <i>aphineriae gravis</i><br><i>pseudotuberculosis</i><br><i>pyogenes</i><br><i>Escherichia coli</i><br><i>Escherichia coli</i><br><i>Escherichia coli</i>                                                                                                                                                                                                                                                                                                                                                                                                                         | 3176<br>3165<br>516<br>2908<br>3385<br>3392                                                                                                                | porcine<br>porcine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150<br>100<br>400                                                                                 | 200<br>150<br>400                                                                                 | 50<br>N.G.                           | 100<br>6.25                            | 3.12<br>N.G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25<br>3.12                                              | 3.12<br>N.G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25<br>3.12                                       |  |
| Escherichia coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3386                                                                                                                                                       | bovine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 350                                                                                               | 350                                                                                               |                                      |                                        | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >400                                                    | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200                                              |  |
| Erysipelothrix sp.<br>Erysipelothrix rhuziopathiae<br>Erysipelothrix rhuziopathiae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 166<br>87193<br>84                                                                                                                                         | ?<br>porcine<br>avian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 250<br>250<br>250                                                                                 | $400 \\ 400 \\ > 400 \\ > 400$                                                                    |                                      |                                        | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >400                                                    | >400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | >400                                             |  |
| Erysipetothrix rhuziopathiae<br>Hemophilus influenzae<br>Klebsiella pneumoniae<br>Moraxella bovis<br>Moraxella bovis<br>Moraxella bovis<br>Moraxella bovis                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{r} 100\\ 2261\\ 3083\\ 3068\\ 2284\\ 418\\ 419\\ 420\\ \end{array} $                                                                       | avian<br>human<br>human<br>bovine<br>bovine<br>bovine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | >400<br>150                                                                                       | >400<br>>400<br>150                                                                               | 12.5<br>0.39<br>0.19<br>0.39<br>0.19 | 12.5<br>0.39<br>0.19<br>0.39<br>0.19   | $0.39 \\ 350 \\ < 0.097 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ < 0.048 \\ <$ | 0.78<br>350<br>< 0.097<br>< 0.048<br>< 0.048<br>< 0.048 | $0.39 \\ >400 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 \\ <0.39 $ | 1.56 > 400<br>< 0.39 < 0.39 < 0.39 < 0.39 < 0.39 |  |

Table 1. Antibacterial spectrum of efrotomycin with some comparisons with X-5108 and mocimycin

-

\_

| Paracolobactrum sp.<br>Paracolobactrum sp.<br>Pasteurella haemolytica<br>Pasteurella haemolytica<br>Pasteurella multocida<br>Pasteurella multocida<br>Pasteurella multocida | 3335<br>3341<br>12<br>67<br>X-73<br>1590<br>443-68<br>*570 | human<br>human<br>bovine<br>avian<br>equine<br>avian<br>avian | >400<br>>400<br>6.25<br>6.25<br>6.25<br>3.122<br>3.12 | >400<br>>400<br>6.25<br>6.25<br>6.25<br>3.12<br>3.12<br>3.12 |                                                                                           |                                                                                           | 350  | >400 | >400 | >400  | VOL. XXIX N |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------|------|------|-------|-------------|
| Pasteurella multocida<br>Pasteurella multocida<br>Pasteurella multocida<br>Pasteurella multocida<br>Pasteurella multocida<br>Pasteurella multocida                          | 8379<br>86<br>8608<br>89<br>9481<br>2909<br>2871<br>2860   | avian<br>avian<br>avian<br>avian<br>avian<br>bovine           | 5.12                                                  | 5.12                                                         | $\begin{array}{c} 6.25 \\ 6.25 \\ 6.25 \\ 6.25 \\ 6.25 \\ 6.25 \\ 6.25 \\ 25 \end{array}$ | $\begin{array}{c} 6.25 \\ 6.25 \\ 6.25 \\ 6.25 \\ 6.25 \\ 6.25 \\ 6.25 \\ 25 \end{array}$ | 0.78 | 3.12 | 3.12 | 3.12  | 0.10        |
| Pasteurella multocida<br>Proteus inconstans                                                                                                                                 | 2869                                                       | avian                                                         |                                                       |                                                              | >400                                                                                      | >400                                                                                      | 150  | 250  | >400 | >400  |             |
| Proteus mirabilis                                                                                                                                                           | 3201                                                       | human                                                         | 350                                                   | 350                                                          | - 100                                                                                     | 2 100                                                                                     |      | 200  |      |       | <u>ب</u>    |
| Proteus mirabilis                                                                                                                                                           | 2919                                                       | human                                                         | 200                                                   | 200                                                          |                                                                                           |                                                                                           |      |      |      |       | TH          |
| Proteus mirabilis                                                                                                                                                           | 2915                                                       | human                                                         | >400                                                  | >400                                                         |                                                                                           |                                                                                           |      |      |      |       | (T)         |
| Proteus mirabilis                                                                                                                                                           | 2918                                                       | human                                                         | 400                                                   | >400                                                         |                                                                                           |                                                                                           |      |      |      |       | JC          |
| Proteus mirabilis                                                                                                                                                           | 3011                                                       | human                                                         | 230                                                   | > 100                                                        |                                                                                           |                                                                                           |      |      |      |       | ĕ           |
| Proteus vulgaris                                                                                                                                                            | 1810                                                       | human                                                         | 300                                                   | 350                                                          |                                                                                           |                                                                                           |      |      |      |       | R           |
| Proteus vulgaris                                                                                                                                                            | 3314                                                       | human                                                         | 350                                                   | 350                                                          |                                                                                           |                                                                                           |      |      |      |       | Z           |
| Pseudomonas aeruginosa                                                                                                                                                      | 3210                                                       | human                                                         | ×400                                                  | >400                                                         |                                                                                           |                                                                                           | 300  | >400 | >400 | >400  | F           |
| Pseudomonas aeruginosa                                                                                                                                                      | 3301                                                       | human                                                         | >400                                                  | >400                                                         |                                                                                           |                                                                                           | 500  | 2100 | 2100 | 2100  | 0           |
| Pseudomonas aeruginosa                                                                                                                                                      | 3250                                                       | human                                                         | >400                                                  | >400                                                         |                                                                                           |                                                                                           |      |      |      |       | OF          |
| Salmonella schottmuelleri                                                                                                                                                   | 3010                                                       | human                                                         | 300                                                   | 300                                                          |                                                                                           |                                                                                           |      |      |      |       | A           |
| " cholerasuis kunzendorf                                                                                                                                                    | 5010                                                       | porcine                                                       | 350                                                   | 350                                                          |                                                                                           |                                                                                           |      |      |      |       | Z           |
| Salmonella enteritis                                                                                                                                                        | 3421                                                       | ?                                                             | >400                                                  | >400                                                         |                                                                                           |                                                                                           |      |      |      |       | TI          |
| Salmonella decatur                                                                                                                                                          | 60AF                                                       | porcine                                                       | 400                                                   | >400                                                         |                                                                                           |                                                                                           |      |      |      |       | BI          |
| Salmonella sp.                                                                                                                                                              |                                                            | ?                                                             | >400                                                  | >400                                                         |                                                                                           |                                                                                           |      |      |      |       | 0           |
| Salmonella typhimurium                                                                                                                                                      | 3404                                                       | ?                                                             | >400                                                  | >400                                                         |                                                                                           |                                                                                           |      |      |      |       | П           |
| Salmonella typhimurium                                                                                                                                                      | 3420                                                       | ?                                                             |                                                       |                                                              | >400                                                                                      | > 400                                                                                     | 200  | 350  | 200  | > 400 | 6           |
| Serratia marcescens                                                                                                                                                         | 3374                                                       | human                                                         | 350                                                   | 350                                                          |                                                                                           |                                                                                           |      |      |      | 10.0  |             |
| Serratia marcescens                                                                                                                                                         | 1543                                                       | human                                                         | 300                                                   | 300                                                          |                                                                                           |                                                                                           | >400 | >400 | >400 | >400  |             |
| Serratia marcescens                                                                                                                                                         | 1544                                                       | human                                                         | 250                                                   | 250                                                          |                                                                                           |                                                                                           |      |      |      |       |             |
| Serratia marcescens                                                                                                                                                         | 1545                                                       | human                                                         | 250                                                   | 300                                                          |                                                                                           |                                                                                           |      |      |      |       |             |
| Serratia marcescens                                                                                                                                                         | 1546                                                       | human                                                         | 250                                                   | 250                                                          |                                                                                           |                                                                                           |      |      |      |       |             |
| Serratia marcescens                                                                                                                                                         | 1547                                                       | human                                                         | 250                                                   | 250                                                          |                                                                                           |                                                                                           | 100  | 100  | 150  | 200   |             |
| Shigella sp.                                                                                                                                                                | 3303                                                       | human                                                         | >400                                                  | >400                                                         |                                                                                           |                                                                                           | 100  | 100  | 150  | 200   |             |
| Shigella sp.                                                                                                                                                                | 3304                                                       | human                                                         | >400                                                  | >400                                                         |                                                                                           |                                                                                           |      |      |      |       |             |
| Shigella sp.                                                                                                                                                                | 3371                                                       | human                                                         | >400                                                  | >400                                                         |                                                                                           |                                                                                           |      |      |      |       |             |
| Shigelia sp.                                                                                                                                                                | 3297                                                       | human                                                         | >400                                                  | >400                                                         | ~ 100                                                                                     | > 100                                                                                     | 200  | 350  | 300  | 400   |             |
| Staphyloccus aureus                                                                                                                                                         | 3080                                                       | human                                                         | >400                                                  | >400                                                         | >400                                                                                      | >400                                                                                      | 200  | 350  | 300  | 400   |             |
| Staphyloccus aureus                                                                                                                                                         | 3000                                                       | human                                                         | <400                                                  | <400                                                         |                                                                                           |                                                                                           |      |      |      |       |             |
| Staphyloccus aureus                                                                                                                                                         | 53                                                         | bovine                                                        | <400                                                  | >400                                                         |                                                                                           |                                                                                           |      |      |      |       |             |
| Staphyloccus aureus                                                                                                                                                         | 2957                                                       | human                                                         | >400                                                  | >400                                                         |                                                                                           |                                                                                           |      |      |      |       | hereit      |
|                                                                                                                                                                             |                                                            |                                                               | - 100                                                 |                                                              |                                                                                           |                                                                                           |      |      |      |       | 08          |

(to be continued)

<sup>085</sup> 

| Test organism                                                                                                                                                                                                                                                      |                                                                                  |                                                                         |                                                      |                                                    |                                                | MIC (μ                                     | g/ml)               |                     |                      |                       |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|------------------------------------------------|--------------------------------------------|---------------------|---------------------|----------------------|-----------------------|--|--|--|--|
|                                                                                                                                                                                                                                                                    | Code No.                                                                         | Animal                                                                  |                                                      | X-5108                                             |                                                | Mocimycin                                  |                     |                     |                      |                       |  |  |  |  |
|                                                                                                                                                                                                                                                                    | Code No.                                                                         | source                                                                  | No serum                                             |                                                    | Plus serum                                     |                                            | Plus serum          |                     | Plus serum           |                       |  |  |  |  |
|                                                                                                                                                                                                                                                                    |                                                                                  |                                                                         | 24 hrs                                               | 48 hrs                                             | 24 hrs                                         | 48 hrs                                     | 24 hrs              | 48 hrs              | 24 hrs               | 48 hrs                |  |  |  |  |
| Streptococcus pneumoniae<br>Streptococcus pneumoniae<br>Streptococcus pneumoniae<br>Streptococcus pyogenes<br>Streptococcus pyogenes<br>Streptococcus pyogenes<br>Streptococcus Group D<br>Streptococcus Group D<br>Streptococcus Group D<br>Streptococcus Group D | I-37<br>II-3372<br>III-3373<br>C-203<br>3332<br>1685<br>198<br>199<br>200<br>201 | human<br>human<br>human<br>human<br>human<br>bovine<br>bovine<br>bovine | > 400<br>> 400<br>> 400<br>> 400                     | >400<br>>400<br>>400<br>>400                       | 50<br>12.5<br>12.5<br>50<br>1.56<br>50<br>1.56 | 50<br>25<br>25<br>50<br>6.25<br>50<br>1.56 | 0.78<br>0.39<br>200 | 3.12<br>1.56<br>300 | 0.78<br><0.4<br>>400 | 3.12<br>>3.12<br>>400 |  |  |  |  |
| Streptococcus Group D<br>Yersinia enterocolitica<br>Yersinia pseudotuberculosis<br>Yersinia pseudotuberculosis<br>Yersinia pseudotuberculosis                                                                                                                      | 203<br>WA<br>271<br>272<br>273                                                   | bovine<br>?<br>avian<br>avian<br>rabbit                                 | >400<br>25<br>25<br>25                               | >400<br>25<br>25<br>25                             | 50                                             | 100                                        | 50                  | 100                 | 25                   | 150                   |  |  |  |  |
| Yersinia pseudotuberculosis<br>Yersinia pseudotuberculosis<br>Yersinia pseudotuberculosis<br>Yersinia pseudotuberculosis<br>Yersinia pseudotuberculosis<br>Yersinia pseudotuberculosis<br>Yersinia pseudotuberculosis                                              | 274<br>275<br>276<br>277<br>278<br>279<br>280<br>281                             | avian<br>avian<br>?<br>?<br>?<br>?<br>?                                 | 25<br>12.5<br>12.5<br>12.5<br>25<br>25<br>25<br>12 5 | 25<br>25<br>12.5<br>12.5<br>25<br>25<br>25<br>12 5 |                                                |                                            | 12.5                | 25                  | 12.5                 | 25                    |  |  |  |  |

\* Received from clinic as *aerobacter*. Based on BERGEY'S Manual of Determinative Bacteriology, 8th edition (1974), these isolates will have to be reclassified. N.G.=No Growth.

Table 2. Bactericidal action of efrotomycin

| Test organism             | Code<br>No. | MIC<br>μg/ml | MLC<br>µg/ml | Ratio<br>MLC: MIC |
|---------------------------|-------------|--------------|--------------|-------------------|
| Pasteurella multocida     | 86          | 6.2          | 6.2          | 1                 |
| Pasteurella multocida     | 89          | 12.5         | 50           | 4                 |
| Pasteurella multocida     | 9481        | 25           | 25           | 1                 |
| Pasteurella multocida     | 2871        | 6.2          | 25           | 4                 |
| Pasteurella multocida     | 8579        | 12.5         | 25           | 2                 |
| Bordetella bronchiseptica | F1728       | 200          | 400          | 2                 |

MIC=Minimal inhibitory concentration; MLC=Minimal lethal concentration

1086

level which prevented visible growth. One-tenth ml portions were removed from the tubes showing no growth and plated in 9.9 ml of brain-heart agar. After 72 hour incubation at 37°C, the colonies were counted. The minimum lethal concentration (MLC) was taken as the lowest effotomycin concentration which killed 99.9% of the cells<sup>7)</sup>. Data are summarized in Table 2.

It is clear that effotomycin is bactericidal with the -static and -cidal concentrations being much the same. Studies on the kinetics of the bactericidal action of effotomycin have yielded some interesting results. In these experiments, the test bacteria for preparing the inoculum were grown in shaken culture

- Fig. 1. Effect of efrotomycin on the growth of a larger inoculum of *Moraxella bovis* 418
- Fig. 2. Effect of efrotomycin on the growth of a small inoculum of *Moraxella bovis* 418



Fig. 3. Effect of efrotomycin on the growth of a larger inoculum of *Pasteurella multocida* 86





Fig. 4. Effect of efrotomycin on the growth of a small inoculum of *Pasteurella multocida* 86



|                           |                               | MIC     | Approximate |            | $ED_{50}$ - mg/dose - 2 doses |             |      |          |       |                     |                            |                      |  |
|---------------------------|-------------------------------|---------|-------------|------------|-------------------------------|-------------|------|----------|-------|---------------------|----------------------------|----------------------|--|
| Infecting culture         |                               |         | Source      | infec      | ting dose                     | Efrotomycin |      | Na Pen G |       | Sulfameth-<br>azine | Chlortetra-<br>cycline     | Chloram-<br>phenicol |  |
|                           |                               |         | µg/ml       | $LD_{50}s$ | c.f.u.                        | s.c.        | p.o. | s.c.     | p.o.  | p.o.                | p.o.                       | p.o.                 |  |
| Pasteurella multocida     | 2871                          | bovine  | 6.2         | 7          | 6                             | 0.52        | 0.71 | 0.03     | 0.15  |                     |                            |                      |  |
|                           | 8579                          | avian   | 12.5        | 14         | $9.8 \times 10^{1}$           | 0.77        | 1.77 | 0.04     | 0.09  |                     |                            |                      |  |
|                           | 8608                          | avian   | 6.2         | 9          | 5                             | 1.36        | 1.65 | 0.05     | 0.16  |                     |                            |                      |  |
|                           | 86                            | avian   | 6.2         | 73         | $3.2 	imes 10^2$              | 0.41        | 0.45 | 0.06     | 0.29  |                     |                            |                      |  |
|                           | 89                            | avian   | 12.5        | 9          | $1.9 \times 10^{1}$           | 0.76        | 0.82 | 0.04     | 0.14  |                     |                            |                      |  |
| Bordetella bronchiseptica | a F1728                       | porcine | 150         | 7          | $1.2 	imes 10^{7}$            | 0.71        | 1.4  |          |       | 0.015               | (0.36 in a different test) |                      |  |
|                           | 25                            | porcine | 150         | 51         | $2.2	imes10^{6}$              |             | 2.73 |          |       | >10                 | 0.31                       | 4.01                 |  |
|                           | 26                            | porcine | 100         | 31         | $9.2 \times 10^{7}$           |             | 2.73 |          |       | >20                 | 0.47                       | ca 2.0               |  |
|                           | 48                            | porcine | 200         | 31         | $4.7	imes10^5$                |             | 4.16 |          |       | (>5)                | 0.38                       | 4.01                 |  |
|                           | 65                            | porcine | 100         | 7          | $4.9 \times 10^{7}$           |             | 3.27 |          |       |                     | 0.19                       | 0.92                 |  |
|                           | 74                            | porcine | 100         | 51         | $6.0 	imes 10^{5}$            |             | 2.75 |          |       | 0.19                | ca 0.46                    | 3.16                 |  |
|                           | В                             | porcine |             | 14         | $1.7	imes10^7$                |             | 2.06 |          |       | <0.04               | 0.56                       | 1.03                 |  |
| Moraxella bovis           | 418                           | bovine  | 0.19        | 7          | $1.3	imes10^7$                |             | 0.58 | 0.004    |       |                     | 0.06                       |                      |  |
|                           | 419                           | bovine  | 0.39        | 3          | $8.7	imes10^7$                |             | 0.68 | 0.10     |       |                     | 0.10                       |                      |  |
|                           | 420                           | bovine  | 0.19        | 7          | $2.5 	imes 10^8$              |             | 0.41 | 0.094    |       |                     | 0.08                       |                      |  |
|                           | 526                           | bovine  | ?           | 11         | $3.8	imes10^7$                |             | 0.91 | 0.02     |       |                     | 0.13                       |                      |  |
|                           | 2884                          | bovine  | 0.39        | 3          | $2.5 \times 10^{8}$           |             | 0.57 | 0.06     |       |                     | <0.08                      |                      |  |
| Streptococcus pyogenes    | C203                          | human   | 50          | 164        | $5.12	imes10^2$               | 0.25        | 0.26 | 0.002    | 0.008 | -                   |                            |                      |  |
| Streptococcus Group D     | 203                           | human   | >400        | 3          | $4.2 \times 10^{8}$           |             | >6.0 | 0.08     |       |                     | >6.0                       | 0.24                 |  |
| Streptococcus pneumonia   | Streptococcus pneumoniae I-37 |         | 100         | 51         | $6.5 \times 10^{1}$           | >8.0        | >8.0 | 0.004    | 0.034 |                     |                            |                      |  |
| Staphylococcus aureus     | Smith                         | human   | >400        | 7          | $1.6 	imes 10^{2}$            |             | >6.0 | 0.02     |       |                     |                            |                      |  |
| Escherichia coli          | 2017                          | human   | 400         | 7          | $8.8	imes10^7$                |             | >6.0 |          |       |                     | 1.69                       | 0.62                 |  |
| Salmonella schottmueller  | ri 3010                       | human   | 300         | 11         | $2.2	imes10^7$                |             | >6.0 |          |       | 3.57                | 0.76                       | 0.18                 |  |

Table 3. In vivo antibacterial activity of efrotomycin

\* c.f.u.=colony forming units.

THE JOURNAL OF ANTIBIOTICS

OCT. 1976

### VOL. XXIX NO. 10 THE JOURNAL OF ANTIBIOTICS

1

in brain-heart broth for 16 hours at 37°C, the same conditions used for the inoculum in the antibacterial spectrum and bactericidal studies. Two test organisms, *Moraxella bovis* 418 and *Pasteurella multocida* 86, were used at two dilution levels in brain-heart broth. Cultures with and without antibiotics were incubated and sampled at intervals, and plate counts were made for survival determinations.

Effective killing of *M. bovis* 418 depends on the inoculum concentration and requires  $6 \sim 8$  hours at a concentration of 0.8 µg of effotomycin/ml. At an effotomycin concentration of 0.4 µg/ml the bacterial counts are fairly level for 6 hours before dropping for a short period (~2 hours) prior to recovery and multiplication (Figs. 1 and 2). The relatively slow rate of kill by effotomycin is also clear from the experiments with *P. multocida* 86 (Figs. 3 and 4). Most interesting is the observation that the bacteria can grow for several hours in effotomycin concentrations that eventually kill most of the population. Concentrations of 1.56, 3.12 and 6.25 µg/ml in Fig. 3 and concentrations of 3.12 and 6.25 µg/ml in Fig. 4 show this phenomenon.

The only published data on the mode of action of this class of compounds are those of WoLF et al.<sup>6)</sup> on kirromycin. This antibiotic is a potent inhibitor of bacterial protein synthesis by interfering with peptide transfer reactions associated with the elongation factor Tu. If this is the mechanism of action of effotomycin as well, the effect is not immediately lethal except at relatively high concentrations of the drug.

## In Vivo Activity

### Efficacy against Mouse Infections

Mice were injected intraperitoneally with cultures grown for 16 hours at  $37^{\circ}$ C in brain-heart broth. Efrotomycin, antibiotic X-5108 and mocimycin were dissolved in ethanol and diluted with 1% Tween 80 in water (v/v). The other drugs were administered as sonicates in 1% Tween, except for penicillin which was an aqueous solution. Five-tenths ml of drug was given by gavage or subcutaneously at the time of infection and 6 hours post infection. Groups of five CFl female mice were used for each level and were observed daily for  $7\sim14$  days after infection. The ED<sub>50</sub> and LD<sub>50</sub> were calculated by the method of KNUDSEN and CURTIS<sup>9</sup>) as mg/dose/mouse. The results are summarized in Table 3.

Clearly, effotomycin is rapidly absorbed after oral administration since it is as active by the oral route as by the subcutaneous route. The *in vivo* efficacy against *Bordetella bronchiseptica* is interesting

in relation to the relative *in vitro* insensitivity of *B. bronchiseptica* isolates to the antibiotic. Moreover, efrotomycin is active against sulfamethazine-resistant *B. bronchiseptica* strains and is equal to chloramphenicol but less active than chlortetracycline. It is less active than penicillin G against strains of *P. multocida* and *M. bovis*.

Supplies of antibiotic X-5108 and mocimycin were adequate for comparison with efrotomycin in only one infection. Both antibiotic X-5108 and mocimycin had lower MIC's than efrotomycin against *B. bronchiseptica* F1728.





However, two 6-mg doses of antibiotic X-5108 were not effective either by gavage or subcutaneously against an infection with *B. bronchiseptica* F1728. This dose, the highest tested, did give a statistically significant prolongation of mean survival time by both routes but lower doses had no effect. Mocimycin was completely ineffective by either route at two doses of 6 mg/mouse. The ED<sub>50</sub> of effotomycin in this test was 1.81 mg per dose by the oral route and 1.24 subcutaneously. Effotomycin is well tolerated following either oral or subcutaneous administration. The oral LD<sub>50</sub> is greater than 4 g/kg and the subcutaneous LD<sub>50</sub> is greater than 2 g/kg.

# Plasma Concentrations

The oral efficacy of effotomycin against *B. bronchiseptica*, which is relatively insensitive *in vitro*, indicates that the antibiotic may be absorbed rapidly and reach and maintain high blood concentrations. This possibility was tested experimentally.

Randomized groups of CFI female mice were dosed by gavage with 4 mg of the sodium salt of efrotomycin per 20 g mouse. Blood was taken from the hearts at intervals using heparinized syringes and the plasma from each group was pooled and frozen until assayed. A microbiological cylinder agar plate diffusion assay was developed using M. bovis 418 as the test organism. Known concentrations of efrotomycin were prepared in normal mouse plasma and test samples were assayed against this standard. The data are presented in Fig. 5. The rapid absorption and prolonged high plasma levels of efrotomycin are evident. The two peaks of activity are most interesting. They have not been explained experimentally. However, biliary excretion of the drug followed by reabsorption is one possibility.

### Serum Binding

Two ml volumes of 200  $\mu$ g effotomycin per ml of horse serum or saline were dialyzed in rotating chambers against 2 ml volumes of saline at 5°C for 48 hours. The test was performed in quadruplicate. Dialysates and dialysants were assayed for antibiotic content using appropriate standards and the *M. bovis* assay. Effotomycin was 30% bound by horse serum under the conditions described.

# Urinary Excretion

One reason for the prolonged blood levels of efrotomycin is the poor urinary excretion of the drug. This was shown experimentally as follows: Five Marland Farms female rats, varying in weight from 190 to 210 g each was given efrotomycin by gavage at a dose of 400 mg/kg body weight. A control group of rats received an equal volume of diluent and was held under the same test conditions. Food and water were available during the test except that water was withheld for the first 6 hours after dosing. Urine was collected from  $0 \sim 6$  hours and from  $6 \sim 24$  hours. Samples from five rats were pooled and frozen until assayed. Standards were prepared in normal urine. Only about 2% of the dose was recovered during the 24-hour test period with approximately 4/5 of this during the last 18 hours. The volume of urine was considerably less from the efrotomycin dosed rats than from the control group, particularly during the first 6 hours. Other studies have shown that continued dosing with high oral levels of efrotomycin have not caused the test rats to show urinary retention (H. M. PECK, personal communication).

#### Discussion

Efrotomycin is a narrow spectrum antibiotic with poor *in vitro* activity. However, the drug shows a number of favorable characteristics. It is quite active against several important animal pathogens. Indeed, its *in vivo* activity is greater than one would predict from *in vitro* potency. It is rapidly absorbed after oral administration and produces high prolonged blood levels; however, this is probably not the

only reason for the unexpected *in vivo* potency. It is not cross-resistant with other drugs used as feed additives or therapeutically in veterinary medicine. It offers promise as a growth permittant in the presence of disease complexes. Data on animal trials will be forthcoming from other investigators.

### References

- BERGER, J.; H. H. LEHR, S. TEITEL, H. MAEHR & E. GRUNBERG: A new antibiotic X-5108 of *Streptomyces* origin. I. Production, isolation and properties. J. Antibiotics 26: 15~22, 1973
- Vos, C. & P. E. J. VERWIEL: Structure of the new antibiotic mocimycin (MYC 8003): Chromophore and furopyranone fragment. Tetrahedron Lett. 1973–30: 2823~2826, 1973
- Vos, C.: The total structure of the novel antibiotic mocimycin (MYC 8003). Tetrahedron Lett. 1973–52: 5173~5176, 1973
- WOLF, H. & H. ZÄHNER: Metabolic products of microorganisms. 99. Kirromycin. Arch. Mikrobiol. 83: 147~154, 1972
- MAEHR, H.; M. LEACH, L. YARMCHUK & A. STEMPEL: Antibiotic X-5108. V. Structure of antibiotic X-5108 and mocimycin. J. Amer. Chem. Soc. 95: 8449~8450, 1973
- 6) WAX, R.; W. MAIESE, R. WESTON & J. BIRNBAUM: Effotomycin, a new antibiotic from *Streptomyces* lactamdurans. J. Antibiotics 29: 670~673, 1976
- BARRY, A. L. & L. D. SABATH: Manual of clinical microbiology. Second edition. pp. 431~432. American Society for Microbiology, Washington, D. C., 1974
- WOLF, H.; G. CHINALI & A. PARMEGGINAI: Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu. Proc. Nat. Acad. Sci., U.S.A. 71: 4910~4914, 1974
- KNUDSEN, L. F. & J. M. CURTIS: The use of angular transformation in biological assays. J. Amer. Stat. Assoc. 42: 282~296, 1947